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Abstract 

Accuracy of the trigonometric measurement of elevations is affected by the systematic influence of a 

vertical refraction, which is caused by changes of meteorological parameters. Submitted paper deals with a 

modelling of the impact of the vertical refraction using selected meteorological parameters. At first, a concise 

derivation of a physical principle of the vertical refraction is given. Then, a multiple regression model and its 

extension into a form of two-regime model are given. Division into two regimes provides a threshold function, 

which expresses the dependence of the original explanatory variables. Different types of the threshold function 

are considered and finally a comparison of the quality of the proposed models and application of a chosen model 

on the results of repeated trigonometric measurements is given. 

Abstrakt 

Presnosť trigonometrického merania prevýšení ovplyvňuje vplyv vertikálnej refrakcie, ktorá je spôsobená 

zmenami meteorologických prvkov. Príspevok sa zaoberá modelovaním vplyvu vertikálnej refrakcie pomocou 

vybraných meteorologických prvkov. Úvodná časť sa venuje stručnému odvodeniu fyzikálneho princípu 

vertikálnej refrakcie. Následne je definovaný viacnásobný regresný model vertikálnej refrakcie, ktorý je ďalej 

rozvinutý do dvojrežimového modelu. Rozdelenie do dvoch režimov zabezpečuje prahová funkcia, ktorá 

vyjadruje závislosť pôvodných vysvetľujúcich premenných. Rôzne typy prahovej funkcie sú uvážené a následne 

porovnanie navrhnutých modelov ako aj použitie vybraného modelu je uvedené. 

Keywords: trigonometric measurement of elevation, vertical refraction, refractive index, meteorological 

parameters, regression model, two-regime model, threshold function 

1 INTRODUCTION 

The results of surveying measurements are affected by the measurement errors that arise due to 

imperfections in instruments, human senses and due to influence of an environment. Because the rapid progress 

in various sectors (sensing devices and sensors, computing technology, transmission and processing of data) for 

the past two decades has positively reflected into the field of instrumental and personal errors, a topic of the 

environment influence still represents open and creative space. 

The intensity and trajectory of the propagating light rays through the atmosphere is affected by 

absorption, diffusion, diffraction, reflection and refraction. The trigonometric measurement of elevations is 

mainly affected by a vertical part of the refraction, i. e. vertical refraction, which irrespective of the current 

modern geodetic instruments remains a limiting factor of using this method [4], [8], [16]. 
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2 PHYSICAL MODEL OF THE VERTICAL REFRACTION 

According to [17], vertical refraction is defined as a curvature of the light rays transmitting from a source 

to a receiver caused by an unstable density of the air layers. Its consequence, an observer sights a target in the 

direction of a tangent to a spatially curved path from the point of observation (fig. 1). 

 

Fig. 1 Influence of the vertical refraction 

A deviation in the measured elevation, caused by the influence of the vertical refraction, can be 

determined by the relationship [10]: 
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where grn  is the group refractive index of air, grhngrad  – the vertical gradient of grn  and mz IJ  – the measured 

zenith angle. The group refractive index of air depends on a wavelength of the electromagnetic waves, physical 

conditions of an environment and its chemical composition. Changes of the refractive index are mainly related to 

the changes of basic meteorological parameters – the air temperature, humidity and pressure. In the field of 

visible light describes this dependence empirical Barrel – Sears relationship [15]: 
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where grN  is the group refractivity, 0

grN  – the group refractivity of a standard atmosphere, 0T , 0p  – the 

temperature in [K] and the pressure in [hPa] of a standard atmosphere, T , p , e  – the temperature, the pressure 

and the water vapor pressure in [hPa] of an ambient atmosphere. Considering that the meteorological parameters 

are a function of height, the vertical gradient of the refractive index can be expressed as follows: 
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Ignoring the impact of the changes of the water vapour pressure and omitting the contribution of the 

second member of the refractive index gradient with respect to the temperature, equation (1) can be written as 

follows [14]: 
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The above mentioned equation can be further simplified by expressing the dependency of the atmospheric 

pressure on a height. On the elementary volume of air acts downward the gravity dG  and the buoyancy force 

dF  in the opposite direction (fig. 2). 
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Fig. 2 The gravity and buoyancy force 

The buoyancy force is equal to the difference of two pressure forces 1F  and 2F  acting in the vertical 

plane. Let p  is the pressure acting on the lower base, then force 1F  equals to: 

  dydxpF 1 , (6) 

while force 2F , acting on the upper base, equals to: 

  dydxdh
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Then, for the buoyancy force can be written [2]: 

  dV
h

p
dhdydx

h

p
dydxpdydxpFFdF 









 21 . (8) 

The gravity equals to: 

  gdVgdmdG     (9) 

and subsequently, in pursuance of the condition of the balance between forces dGdF  , can be for the vertical 

pressure gradient written: 

  



g

h

p
, (10) 

where g  is the gravitational acceleration ( 2sm81,9 g ) and   is the density of air. The density of air depends 

on the air temperature and pressure and can be determined from the ideal gas law [18]:  

  TRnVp  , (11) 

where V  is the volume of a gas, n  – the amount of a substance of a gas, which is:  

  
M

m
n  , (12) 

m  – the mass of a gas, which is associated with the density of a gas according to the following:  

  Vm   , (13) 

M  – the molar mass of a gas, i.e. the mass of one mole of a substance,  

R  –  the molar gas constant  ( -1-1 molKJ314,8 R ). 

 

Based on the equations (11), (12) and (13) can be for the density of a gas written:  
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and analogically, for the density of a gas 0  under the conditions 0T  and 0p : 
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If K15,2730 T  and hPa25,10130 p , the density of air equals to 3

0 mkg29,1  . Dividing equation (14) by 

equation (15), for the density of air is obtained: 
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Substituting equation (16) into equation (10), the vertical pressure gradient equals to: 
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Finally, combining equations (5) and (17), an equation representing the physical model of the vertical refraction 

impact can be written in the following form [14]: 
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The above mentioned derivation shows, that the physical principle of the vertical refraction depends on the 

knowledge of the light wavelength, on the meteorological parameters of the atmosphere ground layer along the 

whole sight at the moment of light ray transition and furthermore on the sight distance and slope. 

3 MATHEMATICAL MODEL OF THE VERTICAL REFRACTION 

Because the determination of the meteorological parameters along the whole sight is not practicable, this 

led in the past to the development of several methods to be used to eliminate the vertical refraction impact [1], 

[7], [9], [13], [19]. Mathematical modelling comes from the idea of incorporating the measurement conditions 

(change of the meteorological parameters, different observational time, etc.) into a mathematical model and 

subsequent calculating the unknown parameters of the model with a sufficient number of the redundant 

measurements. Creation of a mathematical model comprises determination of the variables and equations, 

calculation of the model parameters, verification of a proposed model and its application. 

 The aim of a proposed model is to capture a course of a systematic influence among the series of 

elevations by means of the meteorological parameters. When defining the models we will use a k – dimensional 

vector of the unknown parameters β  and m – dimensional vectors of the explanatory and interpreted variables. 

3.1 Multiple regression model 

The actual physical state of atmosphere at a given location determines the basic meteorological 

parameters. In the lowest layers is most evident the change of the air temperature and pressure. The regression 

model, which expresses a linear dependency of the elevation changes on the changes of the air temperature and 

pressure, can be written in the form: 
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where h  is a measurable elevation [m], T , p  – the air temperature and pressure. The theoretical model 

described by the equation (19) can be expressed in a matrix form, which after the introduction of the 

approximate values of the unknown parameters can be written as follows: 

    ΔβAβfy  0
, (21) 

where β  is a k – dimensional vector of the unknown parameters, 0β  – a  k – dimensional vector of the 

approximate values of β ,  
0

T/
 

 ββfA  – an km – dimensional matrix of the first derivatives of a vector 

function  βf  with respect to β  and quantified for the approximate values, Δβ  – a k – dimensional vector of the 

increments. 

 The task is to find an estimator of the unknown vector parameter β  by means of a realization w  of an 

observation vector ξ ,   Σξ var . Because β  is calculated in a form βΔββ ˆˆ
0  , the subject of estimation is the 

vector of  the increments Δβ  in pursuance of a realization x  of a random vector η , which is generated when 

reducing ξ  by  βf , quantified for the approximate values 0β ,  0βfξη  ,   Ση var . This task is usually 

solved by the least squares method, i.e. from a condition of minimizing a quadratic form [5], [11], [12]: 
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      minˆˆ 1
T

  βΔAxΣβΔAxQ . (22) 

Minimum of the quadratic form is obtained by its derivation with respect to βΔ ˆ  and by subsequent 

placing to equal zero. Then, the estimator βΔ ˆ  of the vector Δβ  can be calculated according to the following: 

    xΣAAΣAβΔ   1T11Tˆ . (23) 

The estimation of the unknown parameters provides the model regularity conditions, i.e.   mkRank A , 

  mRank Σ . 

 The necessary part before the application of the model is its verification, which comprises an 

assessment of the model quality, statistical significance of the estimated parameters and analysis of the 

regression model assumptions. The final stage of the regression model is its application. According to the given 

aim, the proposed, quantified and verified model will be applied in order to reduce the impact of the vertical 

refraction in the following form: 

   '2
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where corrh  is an elevation corrected for the vertical refraction impact. 

3.2 Two-regime model 
The behaviour of air pressure is related to running of the air temperature and consideration of the 

dependency between the explanatory variables allows extending the above mentioned regression model. We 

propose to use the variables dependency in order to divide a region of the air pressure in two sub-regions and in 

each of them will pay potentially different rules – regimes for the interpreted variable. An incorporation of this 

dependence into a single model requires a creation of the new explanatory variables, which are dependent on the 

original variables, but also among themselves. This fact then leads to a violation of the assumption about the 

independence of the explanatory variables and therefore when finding the suitable parameters j  (

kj ,,1,0  ) cannot be used the methods of the classic mathematical statistics. The determining equation of 

the two-regime model can be formulated as follows [14]: 
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or after specification into the regimes, as follows [12]: 
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where min and max are the aggregation functions [3], [6], which assign the smallest and biggest values from the 

pair of values '

ip and  'iTp , and  'iTp  is the threshold parameter defined by the threshold function. The threshold 

parameter splits the atmospheric pressure domain and is incorporated as an explanatory variable to increase the 

fitting potential of the model. 

The threshold function represents an approximation of the relationship between the atmospheric pressure and 

temperature. The approximation of the functional relationship can be solved by different types of functions. 

Among the most commonly used belong polynomial functions. The polynomial of the L
th

 degree expressing the 

relation between the atmospheric pressure and temperature can be written as follows: 
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for mi ,,2,1  and L are the coefficients of the polynomial. Because the appropriate degree of the 

polynomial for this task is not known, we will start with the polynomial of the zero degree (constant, L=0), 

through the first degree (straight-line, L=1) and second degree (quadratic parabola, L=2) to the third degree 

(cubic parabola, L=3). The determining eq. 19 and 25 of both models can be written in a matrix form: 

 ,βfy   (28) 

The establishment of the matrix form of the theoretical model is similar as for the regression model: 

    ΔβAβfy  0 . (29) 

The difference is in the dimension extension of the vector of unknown parameters Δβββ  0  about two 

new parameters 3  and 4 : 
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   T43210 ,,,, β , (30) 

which is subsequently associated with the dimension change of the vector of approximated values 0β , unknown 

increments  Δβ  and matrix  
0

T/
 

 ββfA . If the air pressure is approximated by the polynomial of the zero 

or first degree, then variables 'T , 'p ,   '' ˆ,min Tpp  and   '' ˆ,max Tpp  are linearly dependent. In this case it is 

not necessary to consider parameter 
4  and then the vector of unknown parameters passes to the form: 

   T3210 ,,, β . (31) 

Although the relationship of the individual explanatory variables in the mathematical model is not 

independent, the appropriate values of the vector parameter Δβββ  0
 in the stochastic model can be determine 

with a classic numerical approach, i.e. with the least squares method: 

    xΣAAΣAβΔ   1T11Tˆ̂
, (32) 

where x  is a realization of a random vector  0βfξη  . The solution is conditional to the existence of all 

necessary inversion. These are ensured by the regularity conditions of the model, i.e.   mkRank A , 

  .mRank Σ  Double roof in relation (32) means, that the calculation of the vector parameter is two-staged, i.e. 

into the calculation enters values, which are also the subject of the previous calculations –  iTp 'ˆ . An important 

part after the specification and quantification of the model is its verification. Because the proposed model is not 

built on the statistical assumptions, the verification lies only in the quality assessment. The choice of 

characteristic, quality assessment and comparison of the individual models with different degrees of the 

polynomial is a subject of next part. The final stage, i.e. the application of the model depends on the choice of 

the threshold function, eventually on the degree of a polynomial: 
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where corrh  is an elevation corrected for the vertical refraction impact. 

4 EXPERIMENTAL MEASUREMENT 

The experiment has an irreplaceable place in a research, it serves to obtain or verify the theories, 

hypotheses and experiences. It comprises a tracking of the features, objects and their changes in a relation to the 

external conditions. In our case we focused on observation of the elevations changes with the changing weather 

conditions. We carried out together 13 experiments with length of a measurement from 11 to 14 hours per day 

(tab. 1). For a measurement were chosen sights with different lengths, passing over different types of surfaces 

and with the endpoints stabilized by means of observation pillars allowing attachment of the instruments and 

targets. 

Tab. 1 Basis information about experiments 

No. Date Time Slope distance Instrument 

1 20. 11. 2007 6
15

 – 18
00

  
2)

 232,292 m Trimble 3602 DR 

2 20. 11. 2008 6
40

 – 18
30

  
2)

 183,770 m Trimble 3602 DR 

3 25. 07. 2009 7
00

 – 20
45

 
 2)

 134,504 m Trimble 3602 DR 

4 25. 07. 2009 7
15

 – 21
00

  
2)

 134,504 m Trimble 3602 DR 

5 23. 07. 2010 6
15

 – 20
00

  
2)

 181,944 m Trimble 3602 DR 

6 26. 07. 2010 6
30

 – 20
20

  
2)

 181,944 m Trimble 3602 DR 

7 19. 09. 2011 7
00

 – 19
00

  
1)

 203,831 m Leica TCRA 1201 

8 11. 10. 2011 7
20

 – 18
00

  
1)

 184,547 m Trimble 3602 DR 

9 12. 03. 2012 7
00

 – 19
00 

 
1)

 112,489 m Trimble 3602 DR 

10 31. 03. 2012 7
15

 – 19
15

  
1)

 318,963 m Trimble 3602 DR 

11 19. 04. 2012 7
00

 – 19
00

  
1)

 218,329 m Trimble 3602 DR 

12 19. 04. 2013 7
05

 – 19
05

  
1)

 218,329 m Trimble VX 

13 26.05.2013 7
00

 – 19
00

  
1)

 134,504 m Leica TS30 

 1) – 1 hour lag between measurements, 2) – 2 hours lag between measurements 

Each experiment was performed with the same manner, all parameters needed for further computation 

were measured and registered in 1 or 2 hours interval. Zenith angles were measured in 10 ranks with achieved 

http://gse.vsb.cz/


38 

GeoScience Engineering Volume LXI (2015), No.1 

http://gse.vsb.cz p. 32-41, ISSN 1802-5420 

standard deviation from 1
cc

 to 4,4
cc

. Meteorological parameters – the air temperature and pressure were measured 

simultaneously with the zenith angles at a station point by means of precision hydro-/thermo-/barometer 

equipped with a capacitive humidity sensor, resistance temperature sensor and piezoresistive pressure sensor. 

Height of an instrument and target was determined by measuring on a levelling staff, held at the auxiliary points 

near the endpoints, in two faces of a telescope (fig 3). Each elevation was also determined by means of the 

precise levelling method. In pursuance of the measured parameters were determined the elevations, associated to 

the auxiliary points A and B, for each measurement time according to the following: 

    t

m

si hzdchh  cosAB
, (34)  

where ih  and th  is the height of an instrument and target, c – the Earth curvature correction ( Rsc  2/2 ), s – 

the horizontal distance, R – the radius of the Earth, sd – the slope distance, mz IJ
– the measured zenith angle (fig. 

3). In calculation was not taken into account the influence of a deflection of the vertical and the vertical 

refraction impact. 

 

Fig. 3 Determination of an elevation 

5 EVALUATION OF THE RESULTS 

To assess the quality of the proposed models we chose as a criterion the residual sum of squares. The 

residual sum of squares expresses the part of variability of the interpreted variable, which is not explained by the 

model and therefore a lower value of this criterion indicates a better built model, which more closely reflects the 

modelled data. The comparison of the residual sums of squares between the regression model and two-regime 

model with the threshold function of the different degrees of the polynomial is given in tab. 2. For convenience, 

we also calculated relative percentage improvements of the two-regime model due to the regression model: 

  100



RM

TMRM

SS

SSSS
I , (35) 

where I  is the relative improvement in [%], RMSS  and TMSS  is the residual sum of squares from the regression 

model and two-regime model (tab. 3).  

Tab. 2 Quality comparison of the proposed models 

No. 

Regression 

model 

Two-regime model (L – degree of polynomial) 

    

[mm
2
] [mm

2
] [mm

2
] [mm

2
] [mm

2
] 

1 0,62 0,53 0,53 0,14 0,14 

2 0,83 0,37 0,75 0,64 0,60 

3 0,96 0,79 0,71 0,67 0,81 

4 0,71 0,62 0,57 0,50 0,63 

5 3,24 1,29 1,07 0,13 0,62 

6 4,09 1,82 1,97 1,38 0,45 

7 6,75 5,82 4,67 1,96 4,16 

8 3,50 3,31 3,47 1,30 1,52 

9 1,24 1,15 1,24 0,61 0,71 

10 10,60 10,32 8,53 3,41 7,37 

11 6,32 3,90 4,44 1,82 2,35 

12 6,06 3,60 3,85 1,36 2,43 

13 6,40 3,57 3,80 3,13 2,90 

 

0L 1L 2L 3L
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Tab. 3 Relative percentage improvements 

No. 

Two-regime model (L – degree of polynomial) 

0L  1L  2L  3L  

[%] [%] [%] [%] 

1 14,5 14,5 77,4 77,4 

2 55,4 9,6 22,9 27,7 

3 17,7 26,0 30,2 15,6 

4 12,7 19,7 29,6 11,3 

5 60,2 67,0 96,0 80,9 

6 55,5 51,8 66,3 89,0 

7 13,8 30,8 71,0 38,4 

8 5,4 0,9 62,9 56,6 

9 7,3 0,0 50,8 42,7 

10 2,6 19,5 67,8 30,5 

11 38,3 29,7 71,2 62,8 

12 40,6 36,5 77,6 59,9 

13 41,5 37,7 48,7 52,5 

The above mentioned comparison of the residual sums of squares and the relative percentage 

improvements documents an increase of the quality of the two-regime model compared to the regression model. 

Except the experiments no. 2, 6 and 13, the two-regime model with the quadratic threshold function achieves the 

highest improvements. Based on the selected criterion to assess the quality, we can mark this model as the most 

optimal from all tested and in the next part can be used in order to reduce the impact of the vertical refraction. 

Practical use of the chosen model is graphically presented in fig. 4 and 5, which show time course of measured 

elevations ( h ), elevations acquired by the model ( corrh ) and elevation determined be means of the precise 

levelling ( PLh ). 

 

Fig. 4 Graphical comparison of elevations (experiment no. 5) 

 

Fig. 5 Graphical comparison of elevations (experiment no. 11) 
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6 CONCLUSION 

Changeable environment, where the measurements are realized, effects on the results of these 

measurements and therefore an introduction of the corrections and the elimination of its influence represent one 

of the possibilities of increasing the reliability and accuracy of the acquired results. The trigonometric 

measurement of elevations is a well-known surveying technique which is mainly influenced by the vertical 

refraction. In order to eliminate the impact of the vertical refraction from the results of repeated measurements 

we have established a mathematical model. Besides the classical regression model, we have suggested the two-

regime with the threshold function showing the relationship of the air pressure and temperature. Switching 

between two regimes provides the aggregation functions min and max. To calculate the unknown parameters, we 

used the least squares method. The contribution of the two-regime model versus the regression model is 

documented by the comparison of the residual sums of squares. Given comparison and the achieved relative 

improvements have shown that the two-regime model contributes in higher rate to the variability explanation of 

the modelled elevations and that in any case doesn’t provide lower quality than the regression model. On the 

other hand the disadvantage of the model is the need of calculation of the input variables and also more unknown 

parameters, what according to the model regularity conditions yield to increasing the number of measurements. 

According to the comparison of the residual sums of squares we chose model with the quadratic threshold 

function as the most suitable model from the proposed models. The comparison of match between the corrected 

elevations and the elevations determined by precise levelling has shown that the consideration of the 

meteorological parameters significantly contributes to the elimination of vertical refraction but doesn’t lead to 

the complete exclusion of the vertical refraction. This fact is on one side determined by the quality of the used 

model and on the other side it is a consequence of fluctuations in the systematic influence, which take a variable 

character and may not converge to the zero mean value. 
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RESUMÉ 

Na charakterizovanie priestorovej polohy bodov pomocou terestrických geodetických metód potrebujeme 

okrem polohového merania (smery a dĺžky) vykonať aj výškové meranie (prevýšenia). Podľa prístrojového 

vybavenia a rôznych princípov určovania prevýšení vznikol v geodézii celý rad metód výškových meraní. Každá 

metóda je charakteristická použitým prístrojom a pomôckami, postupom merania, dosahovanou presnosťou 

výsledkov merania a efektívnosťou využitia pri danom účele a podmienkach.  

Trigonometrické meranie prevýšení je bežnou metódou v geodetickej praxi. Napriek nespornému 

pokroku a neustálej modernizácii meracích prístrojov, hlavnou prekážkou použitia trigonometrickej metódy sú 

zmeny meteorologických prvkov, ktoré najvýraznejšie ovplyvňujú presnosť merania zenitových uhlov. Jednou z 

možností zvyšovania spoľahlivosti a presnosti dosiahnutých výsledkov predstavuje výpočet korekcií 

prostredníctvom matematicko-štatistických modelov. 
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