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ABSTRACT 

The aim of this study was to examine flotation of utility metals from poor polymetallic ores and 

verify the potential for profitable yields in connection with potentially economic deposits of non-ferrous 

metals. The paper describes results in flotation concentrate research to recover copper from polymetallic 

ore. The polymetallic ore from Zlate Hory deposit (Czech Republic) was subjected to crushing, grinding, 

and screening to prepare feed for separation with mesh size under 200 microns. The heavy medium 

separation was performed in tetrabromethane with a density of 2.967 g.cm-3. The float and sink products 

were obtained and tested for chemical composition. Next, the treated polymetallic ore sample was subjected 

to flotation. In flotation, various dosages of collector (PAX) and various pH were tested, at which pyrite 

was depressed. The recovery of metallic copper in the concentrate increased with the collector dose. As the 

pH of the medium increased, the pyrite content in the concentrate dropped. The lowest content of pyrite, 

i.e. 4.01 %, was obtained at pH 10. In the original polymetallic ore, the Cu content was 0.41 % after 

subsequent treatment and flotation tests, the Cu content increased to 1.38 % with Cu recovery 86.18 %. 
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1 INTRODUCTION 
Separation of minerals from ore is an important industrial process. Of the commonly used methods of 

separation, flotation exploits the hydrophobic (it is partial or incomplete wettability of a solid phase by the water) 

and hydrophilic (solids are completely wetted by water) properties on the mineral surface. Flotation is a method 

that is based on different surface properties occurring at the contact of three phases - solid (mineral particles), 

liquid (water), and gas (air). Hydrophobic particles adhere to air bubbles that move to the surface to form froth [1].  

Sulphide ores are important sources of base metals, e.g. copper, zinc, lead. In most cases, the minerals of 

copper, lead, zinc and iron coexist on the deposit [2]. Selective flotation of sulphide ores presents several problems 

due to mineralogical properties, incomplete liberation, and chemical differences between ores [3]. Flotation is in 

many cases the only solution to concentrate sulphide minerals [4]. For sulphide minerals, hydrophobicity may 

occur due to the addition of a collector or oxidation leads to the formation of elemental sulphur, metal-deficient 

and sulphur-rich surface [5]. In flotation, xanthates are used as collectors in the separation of sulphide minerals. 

Their consumption is 300 to 500 g/t. Although there are a number of xanthates, sodium ethyl xanthate, isopropyl 

xanthate, sodium isobutyl xanthate or potassium amylxanthate are used in practice [6]. 

Natural copper is rare and represents about 1 % of all copper compounds. Copper may be present either in 

the form of sulphide ores, forming 90 % of copper compounds, or 9 % as oxidic ores [7]. The typical contents of 

copper in sulphide ores is 0.6 %, particularly primary sulphides (e.g. chalcopyrite and bornite) or secondary 

sulphides (e.g. chalcocite and covellite) [8]. Chalcopyrite is one of the most important sulphide minerals, which is 

the main source of copper [9]. The presence of gangue sulphide minerals such as pyrite and non-sulphide minerals 

reduce the quality of concentrates [10]. It is the only naturally floatable copper mineral, for other sulphide copper 

minerals thiol collectors are added to create the hydrophobic surface needed for flotation [11]. Chalcopyrite floats 

well with moderate amounts of xanthate collectors over a wide pH range [12]. 

Chalcopyrite is associated with pyrite in ore; therefore, pyrite depression is required for economic recovery. 

The main problem of chalcopyrite and pyrite is their selectivity, which is caused by accidental activation of pyrite 

by dissolved Cu2+ ions from complex sulphide ores. This increases the interaction of pyrite with collectors, thereby 

increasing its floatability [13]. Various agents, such as polymers, hydroxides, carbonates, cyanides, or sulphites, 

are used to suppress pyrite [14]. 
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Mukunga [15] investigated the selectivity and kinetics of PAX and DANA (sodium amyl dithiophosphate) 

in the recovery of copper from sulphide copper-cobalt ore. Natural pH and pH 11 were observed. At natural pH, 

the copper content of the concentrate obtained was 16.1 % with a yield of 99.63 %. At pH 11, the copper content 

was 16.1 % with a yield of 99.05 %. These results showed that at natural pH and pH 11, the kinetics of copper 

regeneration with PAX is superior to DANA. 

2 MATERIALS AND METHODS 
For this work, a sample of polymetallic ore was used from Zlate Hory-East (Czech Republic). For 

laboratory tests, it was necessary to prepare the sample by crushing and grinding. A total of 9 kg of polymetallic 

ore was crushed and ground. This was followed by sizing of -200 μm. 

This modified sample was subjected to X-ray diffraction to determine the mineral content (Tab. 1). A 

substantial part of the polymetallic ore production was represented by quartz (87.03 %). Other non-metallic 

minerals represented were barite, albite, chlorite and muscovite. Pyrite, chalcopyrite and sphalerite were present 

as ore minerals. The largest amount in the sample was sphalerite (3.64 %). Chalcopyrite was 1.59 %. 

Table 1. X-ray diffraction results of ore sample - input 

mineral quartz pyrite chalcopyrite sphalerite albite chlorite muscovite barite 

content 

[%] 
87.03 2.30 1.59 3.64 1.89 1.28 0.48 1.79 

Elemental composition was determined using XRF analysis (Tab. 2). Of the main ore minerals, Zn content 

was 2.79 % and Cu 0.41 %. In addition to the elements listed in the table in polymetallic ores occurring elements 

in trace amounts. 

Table 2. XRF analysis results of ore sample - input 

element Al2O3 SiO2 Fe2O3 Cu Zn Pb S 

content [%] 1.91 76.08 6,95 0.41 2.79 0.11 4.96 

 

To reduce the quartz content of the sample, we used heavy medium separation. The modified sample was 

subjected to heavy medium separation. The medium was 1,1,2,2-tetrabromethane 98.8 % with a density of 

2.967 g.cm-3. The sample was washed with methanol and distilled water, and left to dry at 105°C. 

The obtained sink fraction was subjected to flotation tests. The procedure scheme is shown in Fig. 1. 

Flotation tests were performed on a pneumatic-mechanical flotation machine VRF-1 with a flotation cell volume 

of 1dm3. For each experiment, we used 100 g/l of sample. The sample was conditioned for 2 minutes. 

Subsequently, the collector was added, and conditioning continued for 2 minutes, the frother was added and 

conditioned for 1 minute. Concentrate was obtained after 10 minutes. Potassium amylxanthate (PAX) was used as 

the collector, the polyethyleneglycol (PEG) was the frother and Ca(OH)2 was used to adjust the pH. It was used 

for flotation tests 3180 g/t PEG and 36 g/t, 42 g/t, 56 g/t, 70 g/t and 84 g/t PAX. Following the flotation tests in 

which the most appropriate collector dose was selected, the pH was monitored 8, 9, 10, 11. 
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Figure 1. Procedure scheme 

3 RESULTS AND DISCUSSION 

Heavy medium separation 
A 9 kg sample of polymetallic ore was used for heavy medium separation. Of the total amount, 1 kg was 

obtained as a sink fraction and the remaining fraction was a float fraction. Based on XRD analysis, the float fraction 

was more than 90 % quartz, muscovite, albite and chlorite. Because of its composition, the float fraction was not 

further interesting for processing. 

Table 3 shows the composition of a sample of sink fraction from heavy medium separation. The application 

of heavy medium separation was prepared using sulphidic concentrate containing 30.10 % Fe2O3, 11.50 % Zn, 

0.99 % Cu, 26.88 % S. The content of SiO2 was reduced from 76.08 % to 30.10 %. 

Table 3. XRF analysis results of sink fraction 

element Al2O3 SiO2 Fe2O3 Cu Zn Pb S 

content [%] 1.35 30.10 30.10 0.99 11.50 0.14 26.88 

Flotation 
The first flotation focused on selecting the most suitable collector amount. The pH was constant during the 

flotation tests, the pH was 6.1. Figure 2 and Table 4 show the results of flotation tests. With increasing dose of 

PAX collector, Cu recovery in individual concentrates increased. The highest Cu recovery of 94.23 % in the 

concentrate was achieved at a collector dose of 84 g/t. With increasing dose of PAX, the flotation efficiency 

increased. At a dose of 84 g/t PAX, an efficiency of 77.22 % was achieved, while the lowest efficiency was 

61.36 % at a dose of 70 g/t. The highest mass recovery of 60 % was obtained at the 56 g/t PAX dose, while the 

lowest mass recovery of 45 % was at the 42 g/t PAX dose. The Cu content in the concentrates ranged from 1.12 

to 1.13 %, only at a dose of 36 g/t PAX the highest Cu content of 1.2 % was achieved. The enrichment of Cu was 

in range of 1.13-1.20 %. The highest enrichment of Cu was 1.20 % at the dose 36 g/t and 70 g/t PAX. According 

to the results, a dose of 84 g/t PAX was selected for further flotation tests. 
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Figure 2. Results of flotation tests 

Rm – Cu recovery, SE_Cu - separation efficiency of Cu, v - mass recovery 

 

Table 4. Content of Cu and enrichment of Cu in the sample 

dose collector content Cu [%] enrichment Cu [%] 

36 g/t 1.2 1.20 

42 g/t 1.13 1.14 

56 g/t 1.13 1.14 

70 g/t 1.19 1.20 

84 g/t 1.12 1.13 

 

 Cu recovery was calculated according to the following formula [16]: 

𝑅𝑚 =
𝑐∙(𝑓−𝑡)

𝑓∙(𝑐−𝑡)
∙ 100%  (1) 

where: 

f = Cu in the ore, c = Cu in the concentrate, t = Cu in tailings, Rm = the recovery of the valuable mineral. 

Separation efficiency was calculated according to the formula [17]: 

 

𝑆𝐸𝐶𝑢 = 𝑅𝑚 − 𝑅𝑔  (2) 

where: 

SECu = separation efficiency of Cu (%), Rm = the recovery of the valuable mineral and Rg = recovery of the 

gangue into the concentrate.  

Vizcarra et al. [18] studied the effect of particle shape properties on chalcopyrite flotation kinetics. The 

results of the study showed that the particle shape properties are only important for minerals that are characterized 

by slow flotation kinetics, so they are likely to be of greater importance for weakly hydrophobic particles. In the 

presence of PAX, the shape properties were not found to contribute significantly to the rate at which the particles 

float. 
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The aim of the second part of the flotation tests was to select the optimal pH, at which pyrite was depressed. 

Depression of pyrite in copper concentrate occurs at high pH. Lime is most often used to depress pyrite at pH 11 

[19]. The amount of collector used in these tests was 84 g/t. Figure 3 and Table 5 show the results of flotation tests 

for different pH values. With increasing pH, Cu recovery in different concentrates increased. The very highest Cu 

recovery of 86.22 % was obtained at pH 11. The efficiency of individual flotations increased with increasing pH. 

The very highest efficiency of 55.98 % was achieved at pH 11, while the lowest efficiency of 14.15 % was at pH 

8. The mass recovery of concentrate increased with increasing pH. The highest mass recovery 60.37 % was 

obtained at pH 11. In contrast, the lowest mass recovery at pH 8 was 40.0 %. With increasing pH, the Cu content 

in the concentrate decreased. At pH 8, the Cu content was 1.86 %, but at pH 11 only 1.25 %. Concurrently with 

increasing pH, the Cu enrichment in the concentrate decreased. At pH 8, the Cu enrichment was 1.88 %, but at pH 

11 was 1.26 %. 

 

 

Figure 3. Results of flotation tests 

Rm - Cu recovery, SE_Cu - separation efficiency of Cu, v - mass recovery 

Table 5. Content of Cu and enrichment of Cu in the sample 

pH content Cu [%] enrichment Cu [%] 

8 1.86 1.88 

9 1.72 1.74 

10 1.38 1.40 

11 1.25 1.26 

 

Figure 4 shows the results of depressing pyrite at different pH values. With increasing pH, the content of 

pyrite in the concentrate decreased. At pH 8 the pyrite content of 9.26 %, but at pH 11 pyrite content was only 

4.20 %. The lowest amount of pyrite was at pH 10, the content was 4.01 %. Based on the result, in which pyrite 

was depressed the best pH was 10. At pH 10 the greatest depressing of pyrite showed, wherein the content was 

4.01 % and the content chalcopyrite in the concentrate was 13.16 %. 
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Figure 4. Results of pyrite depression 

4 CONCLUSION 
A sample of polymetallic ores from the Zlate Hory-East deposit was subjected to flotation. The sample was 

adjusted to a suitable grain size and subjected to X-ray and XRF analysis. On the basis of the obtained results, the 

separation of quartz in heavy medium separation and subsequent flotation was performed. First, the effect various 

dosages of collector on the flotation efficiency was observed. The second series of flotation was used to determine 

pH at which to achieve maximum depressing of pyrite. With increasing the dose of PAX collector, Cu recovery in 

individual concentrates increased. As a result, it turned out that the dose of 84 g/t PAX was the best dose for next 

flotation. As the pH of the medium increased, the pyrite content of the concentrate was reduced. The content pyrite 

in concentrate was 4.01 % for pH 10. Concurrently with increased pH, flotation efficiency increased. In the original 

polymetallic ore, the Cu content was 0.41 % after subsequent treatment and flotation tests, the Cu content was 

increased to 1.38 % with Cu recovery 86.18 %. 
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